Matrix Cartan Superdomains, Super Toeplitz Operators, and Quantization

نویسندگان

  • David Borthwick
  • Slawomir Klimek
  • Andrzej Lesniewski
  • Maurizio Rinaldi
چکیده

We present a general theory of non-perturbative quantization of a class of hermitian symmetric supermanifolds. The quantization scheme is based on the notion of a super Toeplitz operator on a suitable Z2-graded Hilbert space of superholomorphic functions. The quantized supermanifold arises as the C-algebra generated by all such operators. We prove that our quantization framework reproduces the invariant super Poisson structure on the classical supermanifold as Planck’s constant tends to zero. 1 Supported in part by the National Science Foundation under grant DMS–9206936 2 Supported in part by the Department of Energy under grant DE–FG02–88ER25065 3 Supported in part by the Consiglio Nazionale delle Ricerche (CNR)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Berezin-Toeplitz Quantization on the Schwartz Space of Bounded Symmetric Domains

Borthwick, Lesniewski and Upmeier [“Nonperturbative deformation quantization of Cartan domains,” J. Funct. Anal. 113 (1993), 153–176] proved that on any bounded symmetric domain (Hermitian symmetric space of non-compact type), for any compactly supported smooth functions f and g , the product of the Toeplitz operators TfTg on the standard weighted Bergman spaces can be asymptotically expanded i...

متن کامل

Weighted slant Toep-Hank Operators

A $it{weighted~slant~Toep}$-$it{Hank}$ operator $L_{phi}^{beta}$ with symbol $phiin L^{infty}(beta)$ is an operator on $L^2(beta)$ whose representing matrix consists of all even (odd) columns from a weighted slant Hankel (slant weighted Toeplitz) matrix, $beta={beta_n}_{nin mathbb{Z}}$ be a sequence of positive numbers with $beta_0=1$. A matrix characterization for an operator to be $it{weighte...

متن کامل

Radial Toeplitz operators on the weighted Bergman spaces of the Cartan domain $SU(n,n)/S(U(n)\times U(n))$

We consider Toeplitz operators on Bergman spaces over the bounded symmetric domain SU(n, n)/S(U(n)×U(n)). As a special case of a previous result, it was shown that Toeplitz operators with radial symbols (that is, symbols that are invariant under the action of S(U(n)×U(n))) generate a commutative C∗-algebra. As a consequence, it is possible to simultaneously diagonalize all Toeplitz operators wi...

متن کامل

Toeplitz Operators and Solvable C*-algebras on Hermitian Symmetric Spaces

Bounded symmetric domains (Cartan domains and exceptional domains) are higher-dimensional generalizations of the open unit disc. In this note we give a structure theory for the C*-algebra T generated by all Toeplitz operators Tf(h) := P{fh) with continuous symbol function ƒ G C(S) on the Shilov boundary 5 of a bounded symmetric domain D of arbitrary rank r. Here h belongs to the Hardy space H(S...

متن کامل

Commutative C ∗ - algebras of Toeplitz operators and quantization on the unit disk ✩

A family of recently discovered commutative C∗-algebras of Toeplitz operators on the unit disk can be classified as follows. Each pencil of hyperbolic straight lines determines a set of symbols consisting of functions which are constant on the corresponding cycles, the orthogonal trajectories to lines forming a pencil. The C∗-algebra generated by Toeplitz operators with such symbols turns out t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995